A Novel Role of Dma1 in Regulating Forespore Membrane Assembly and Sporulation in Fission Yeast

نویسندگان

  • Wen-zhu Li
  • Zhi-yong Yu
  • Peng-fei Ma
  • Yamei Wang
  • Quan-wen Jin
چکیده

In fission yeast Schizosaccharomyces pombe, a diploid mother cell differentiates into an ascus containing four haploid ascospores following meiotic nuclear divisions, through a process called sporulation. Several meiosis-specific proteins of fission yeast have been identified to play essential roles in meiotic progression and sporulation. We report here an unexpected function of mitotic spindle checkpoint protein Dma1 in proper spore formation. Consistent with its function in sporulation, expression of dma1(+) is up-regulated during meiosis I and II. We showed that Dma1 localizes to the SPB during meiosis and the maintenance of this localization at meiosis II depends on septation initiation network (SIN) scaffold proteins Sid4 and Cdc11. Cells lacking Dma1 display defects associated with sporulation but not nuclear division, leading frequently to formation of asci with fewer spores. Our genetic analyses support the notion that Dma1 functions in parallel with the meiosis-specific Sid2-related protein kinase Slk1/Mug27 and the SIN signaling during sporulation, possibly through regulating proper forespore membrane assembly. Our studies therefore revealed a novel function of Dma1 in regulating sporulation in fission yeast.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of the DYRK Kinase Pom2 in Cytokinesis, Mitochondrial Morphology, and Sporulation in Fission Yeast

Pom2 is predicted to be a dual-specificity tyrosine-phosphorylation regulated kinase (DYRK) related to Pom1 in Schizosaccharomyces pombe. DYRKs share a kinase domain capable of catalyzing autophosphorylation on tyrosine and exogenous phosphorylation on serine/threonine residues. Here we show that Pom2 is functionally different from the well-characterized Pom1, although they share 55% identity i...

متن کامل

The fission yeast pleckstrin homology domain protein Spo7 is essential for initiation of forespore membrane assembly and spore morphogenesis

Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the S...

متن کامل

The cation-transporting P-type ATPase Cta4 is required for assembly of the forespore membrane in fission yeast.

A novel sporulation-deficient mutant, sev4-L5, was isolated in a genetic screen of a collection of temperature-sensitive mutants of Schizosaccharomyces pombe. The wild-type sev4 gene was identified as cta4+, which encodes a putative cation-transporting P-type ATPase. The sev4-L5 allele harbored a single missense mutation that caused replacement of Gly615 with a glutamate at the putative ATP-bin...

متن کامل

Meiotic actin rings are essential for proper sporulation in fission yeast.

Sporulation is a unique form of cytokinesis that occurs following meiosis II in many yeasts, during which four daughter cells (spores) are generated within a single mother cell. Here we characterize the role of F-actin in the process of sporulation in the fission yeast Schizosaccharomyces pombe. As shown previously, we find that F-actin assembles into four ring structures per ascus, referred to...

متن کامل

Ectopic overproduction of a sporulation-specific transcription factor induces assembly of prespore-like membranous compartments in vegetative cells of fission yeast.

Mei4 is a key sporulation-specific transcription factor in fission yeast. Ectopic expression of Mei4 in vegetative cells caused formation of nucleated membranous compartments, which shared common features with normal forespore membranes, thereby perturbing nuclear division. These results suggest why expression of development-specific transcription factors must be strictly controlled.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010